A Framework for
Virtual Device Driver Development &
Virtual Device-Based Performance Modeling

Zachary H. Jones
Ph.D. Defense — Nov. 12, 2010

Committee
R. M. Geist (Chair), J. M. Westall, B. C. Dean, and H. C. Grossman

Acknowledgements

This research has been supported by

 IBM Faculty Awards
 IBM Ph.D. Fellowship

e NSF Grant Award 0722313

Thesis Statement

We will provide solutions to problems in
operating system virtualization that have

been motivated by major projects in
CPSC 822.

Motivation

« CPSC 822, Operating System Design: A Case Study

— Second level, graduate OS course
— Modity schedulers for performance
— Build new kernels
— Write drivers for real devices
* Limitations:
— Dedicated hardware required (usually crashed)
— Limited enrollment
— Waiting list, every semester

e Standard evaluation (5 yrs. out): the most valuable
course of educational career

Virtualization?

A large part of the course could be virtualized
(VMWare, XEN, KVM)
Oops! Two important projects resist this:

— Write a driver for non-trivial graphics card (interrupts,
DMA, buffer handling, memory mapping)

— Design a new disk scheduler that outperforms default
Linux schedulers

How do we manage & deploy a virtualized OS lab?
— Ensure accurate performance measurements

We need to simplity the process of providing unique
non-trivial graphics card each semester.

The Framework

Kernel Probes

Debug mechanism to monitor events in a system.
— Probe almost any instruction in the kernel
— Pre-handler runs, execute probed instruction, post-handler runs

e Three flavors

— kprobe
— jprobe
— kretprobe
« (Caveat: Probes cannot be attached to inline functions or
functions declared with kprobes

* kprobe utility lacks ability to dynamically replace any kernel
function...

Intercept Probe (iprobe)

* Use jprobe to check function parameters

* If caller flagged as accessing VPCI device,
intercept

— Temporarily replace probed instruction with
nop

— Kprobe post-handler modifies the IP to
address of replacement function.

VIRTUAL PCI FRAMEWORK

Device Driver Development

* Device driver for non-trivial graphics card
— Formerly 3Dlabs Permedia2V

e Virtualization provides only a simple VGA controller

— Hardware accelerated graphics solutions virtualized at API level
rather than architecture level

— Experimental support for importing devices to virtual machines
starting to emerge

e Still leaves one more problem

— Virtualization of one architecture is inadequate...graduate
students have been known to communicate with one another

Design Goals for Virtual PCI Framework

e Support sophisticated components:
— Requires scheduling
— Requires memory mapping
— Generates Interrupts
— Provides DMA
 Require no special function calls.
* No modifications to existing Linux kernel

* Virtual architecture that can be easily
reconfigured each semester

Virtual PCI Framewopk

s
s

Interrupt

>
->
IR
>

VPCI Bus: DD Interface

* Intercept PCI functions

— DD does not talk to real PCI bus when
accessing a virtual device

* Intercept dma__ alloc_ consistent()
— Capture buffer addresses
 Intercept remap_ pfn_ range()

— Capture user mapped address to device
register base

VPCI Bus: Memory Management

 Added VPCI Page Fault to the page fault handler

(do__page_fault())
* When device driver requests the memory to be mapped with

write permissions

— VPCIB intercepts

— sets the memory to read-only; flush TLB

— activates the fault handler
* When the device driver/user code writes to the memory

— Page fault exception

— do__page_fault() hands control to the VPCI fault handler.

— VPCI fault handler restores write permission, flush TLB, wakes
up the VCD, and returns execution to spot of the fault

VPCI Bus: Interrupts

* When a DMA buffer is finished, an IRQ must be
raised so the DD interrupt handler is notified

« How do you throw a hardware IR(Q from software?

— Intel x86 instruction int is for generating software
interrupts

— X806 interrupt mapping starts at 32
— x86 64 interrupt mapping starts at 48

VGPU

* Allocates a kernel page
* Registers the device with VPCI Bus

— Gives memory address, IRQ number, device IDs for use
with Iprobes

* In response to fault handler
— Wake up daemon
e In response to VCD

— When done processing registers, write protect the register
page, flush TLB, sleep

— Generate interrupt if DMA is running, sleep until device
driver interrupt handler finishes

VCD

Map register page from VGPU
Initialize registers
Use ioctl() to sleep

Forever {

if (register values changed) take action
e.g. start graphics mode, draw to the screen, initiate DMA

Use ioctl() to write protect the page and sleep

}

Status

e Successfully deployed in CPSC 822 for 4 semesters

* Kernel Modifications:
— Most are avoided by kernel probes
— Remove __ kprobes from do_page fault()

e Devices:

— Can write binary compatible device drivers for use
with real hardware

* Allow for parallel development of DD and HW

Transparency to Students

How much would it cost to buy a Zachl?

3 —
Students
ol | L .

$1,000 $500 $200 $100

VIRTUAL PERFORMANCE
THROTTLES

Disk Scheduling

Heavily-loaded system: non-empty queue of
pending disk requests likely

— Schedule in which order?

Algorithms studied for at least 4 decades!
Increasing importance:

— 20 years ago: CPU speed in us, disk speed in ms
— Today: CPU speed in ns, disk speed still in ms

— Disks are performance bottlenecks

Algorithms not constrained to be work-conserving

FExample

10 41 50 60 05

L ® Eu * L

e Order of arrival is 95, 10, 60, 41 (r/w head at 50)

 Travel time constant per unit distance

FExample

10 41 50 60 05

L ® Eu * L

 Is greedy (shortest-access time first) better?

FExample

10 41 50 60 05

L ® Eu * L

 But is it optimal?

Disk Scheduling Development

* Design a new disk scheduler that
outperforms default Linux schedulers

* Development can be carried out easily on
virtual machines.

Access time in ms

10

Non-cached

5 10 15 20 25 30
Distance in millions of sectors

35

40

Access time in ms

10

Cached

Virtual-to-Physical Abstraction

10 15 20 25 30
Distance in millions of sectors

35

40

VPT Design Goals

* Provide a method for predicting the
performance of disk scheduling algorithms
on real machines using only their
performance on virtual machines

* Provide a new, high-performance, disk
scheduling algorithm as a case study

VPT Implementation

iprobe & jprobe in SCSI path to force virtual
service times to be proportional to real ones.

— Linear Seek Model: X,. = R,/2 + S, (d,. /D,)

Force virtual service time kX, where k is
constant

Observed virtual service time is X,
jprobe: calculate kX,
iprobe: delay request completion kX, K — X_

More Implementation

Dynamic Scaling

* Up: More than 1% of requests complete after target time
— k to small — increase k

 Down: Less than 0.1% of requests complete after target time
— k to large — decrease k

e Ability to lock k for measurement runs

* System reports current k

— Rule 1: accuracy
— Rule 2: simulation run-time

Cache Mode
e Shadow the real cache

* On a cache hit adjust service time to match target drive cache
service time

Case Study

e Test viability of VPTs

* Predict the performance of disk scheduling
algorithms, one of which is new

 Compare the performance of each algorithm
on a VM employing a VPT versus a real
machine

Schedulers

e Shipped with Linux
— No-op
— Anticipatory (Defunct)
— Deadline
— Completely Fair Queuing
* Proposed
— Cache-Aware Table Scheduling (CATS)

CATS

e Separate reads and writes; reads have priority
* Writes use CSCAN with request coalescing
* Writes served in bursts (MAX/MIN WRITEDELAY)

 Reads use algorithm I' with request coalescing:

— For any collectlon of n requests, find optimal (minimum
response time) completion sequence in worst-case O(n?)
time

— Serve first request from optimal list

— Re-compute optimal list, if new arrivals

» QOut-wait deceptive idleness (5 ms)

CATS

* Cache model: number of segments, sectors per
segment, pre-fetch size (sectors)

* Cache model assumptions: fully associative, FIFO
replacement, wrap-around within segments

* Affects on scheduling:

— Maintain shadow cache within scheduler

— On each dispatch, check entire queue for predicted
cache hit

— If predicted hit, schedule immediately

Platform

e Re

al:
Linux 2.6.30

Dual Intel Xeon 2.80GHz
CPUs

Western Digital IDE system
drive

Dual 73.4 GB Seagate
Cheetah 15.4K SCSI drives

Dual Adaptec 39320A
Ultra320 SCSI controllers

Tests restricted to single
SCSI drive

e Virtual:

— KVM-based, virtual Linux
2.6.30

— Hosted on IBM 8853AC1
dual 2.83GHz Xeon blade

— Virtual 73.4 GB SCSI disk

— Virtual disk on NetApp
FAS960c, access NF'S

e (Cache Model

— 64 segments
— 221 sectors per segment
— 64-sector pre-fetch

Access time in ms

10

Physical

Virtual
8t 4
6 | i
4 F i
2 L i
0 1 1 1 1 1 1

0 20 40 60 80 100 120 140

Distance in millions of sectors

Platform Drives

Workload

 Barford & Crovella:

(SURGE) tool forever{

e 64 processes, generate a file count, n, from Pareto(c, ,k;);

repeat(n times){
select file from L files using Zipf(L);
while(file not read){
read one page;
generate t from Pareto(a, ,k,);
sleep t ms;

each executes:

Results

* 64 processes, 50,000 requests, O DIRECT

— Service and response times in ms

— Throughput in sectors/ms

Mean Service 1.96 2.71 1.39 2.58

Mean Response 37.35 59.87 124.70 53.79

Throughput 8.19 6.08 2.19 6.15

Results

e 64 processes, 50,000 requests, non-O DIRECT

— Service and response times in ms

— Throughput in sectors/ms

Mean Service 6.53 7.41 7.80 7.15 7.60 8.57

Mean Response 114.91 121.87 179.17 189.198 198.33 258.75

Throughput 12.00 12.04 9.08 11.44 11.68 8.82

O DIRECT non-O DIRECT

CATS(r) P CATS(r)
CATS(v) CATS(v)
deadline(r) i deadline(r)
deadline(v) - 1 0.8 i deadline(v) - 1
ciq(r) ; ciq(r)
cfq(v) s cfq(v)
. 0.6 .
| | | | 1 1 1 1 0 “‘ 1 | | | | 1 1 1 1
100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Response Time in ms Response Time in ms

Response Distributions
Distribution plots for O DIRECT and non-O_ DIRECT workloads

VIRTUAL 822 LLAB

LLab Environment

VMs run on 6 dual-Xeon blades.
Part of 42-blade eServer BladeCenter.
Access from campus‘ = |
by gateway machine "
via SSH. VMs stored on NAS,
accessed by NF'S.

Custom scripts used for managing and accessing lab.

LLab Environment

* Timing
— Paravirtualized clock

— When enabled guest kernel will receive system
time updates from the hypervisor

e Performance
— Cost of virtualization on CPU bound tasks.
— Using the right CPU pinning <1% penalty.

Status

* New method for predicting (real) disk scheduler performance
using solely a VM

 Method uses new iprobe to force virtual service times to
match simple service model

* New disk scheduler (CATS) provided as case study

e Absolute performance predictions not yet accurate, but
relative predictions are quite accurate

e Fair criticism: just using virtual Linux as elaborate simulator

— True, but good results with almost zero programming
effort!

VIRTUAL CARD GENERATION

Conclusions

e Virtual PCI Architecture

e Virtual Performance Throttles
— CATS

e Virtual 822 Lab

— Virtual Card Generation

Future Work

 Virtualize CUDA devices

— Card sharing or merging

e Wish list
— VPCI Architecture

e More devices

— VPTs
» Use for network 1/0
* Model the decay of SSDs

— Virtual Card Generation
 More tunable parameters

Solid Foundation

Measuring Success

“For me, the first challenge for computing science is to discover
how to maintain order in a finite, but very large, discrete
universe that is intricately intertwined. And a second, but not
less important challenge is how to mold what you have achieved
in solving the first problem, into a teachable discipline: it does
not suffice to hone your own intellect (that will join you in your
grave), you must teach others how to hone theirs. The more you
concentrate on these two challenges, the clearer you will see that
they are only two sides of the same coin: teaching yourself is
discovering what is teachable.”

— Edsger W. Dijkstra,
EWD 709: My hopes of computing science

Questions & Comments

