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Abstract

Operating system virtualization tools such as VMWare, XEN, and Linux KVM export only min-

imally capable SVGA graphics adapters. This paper describes the design and implementation of

system that virtualizes high-performance graphics cards of arbitrary design to support the construc-

tion of authentic device drivers. Drivers written for the virtual cards can be used verbatim, without

special function calls or kernel modifications, as drivers for real cards, should real cards of the same

design exist. The applications of the system include both instruction in device driver design and

allowing device driver design to proceed in parallel with new hardware development. While this

allows for arbitrary design, it is not able to model performance characteristics. We propose the

a new kernel system that allows for arbitrarily changing the performance of a device. These vir-

tual performance throttles (VPTs) use an model of the performance of a physical device with the

framework provided by the virtual device architecture.
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1 Introduction

In this dissertation, we will provide solutions to problems in operating system virtualization that

have been motivated by major projects in Computer Science 822 (CPSC 822) at Clemson University.

Computer Science 822, Operating System Design: A Case Study, has been offered as an advanced,

graduate course in operating systems at Clemson University since 1985. The hardware platform and

the operating system have changed through the years (currently Linux 2.6.30 on Intel hardware), but

the structure and the principal thrust have remained the same. It is a walk-through of the source of a

UNIX derivative in which the students modify schedulers to improve performance, build new kernels

with additional system call capabilities, and write device drivers for real devices. Students have

found the course extremely valuable in advancing their understanding of system software design.

Nevertheless, the total impact of the course, in terms of the number of students served, has

been limited by available resources. Students who have previously completed the CPSC 822 course

have always been in high demand by the systems industry, but total student production (course

throughput) at Clemson University has been severely limited by the available budget. Students

writing system-level code frequently crash their systems, often with disk-corrupting failures, and

thus the course has always required both dedicated hardware and the laboratory space in which to

house it, which collectively represents a relatively large expense for a single course.

The recent, hardware-enabled move to system virtualization, typified by VMWare, XEN, and

Linux KVM, offers great potential to expand course impact. Many course components, e.g., new

kernel builds and scheduler experiments, could be directly handled by any of the virtualization tools.

Nevertheless, key course projects have remained out of reach of such tools. One such project is

building a device driver for a high-performance graphics card. Most graphics cards have proprietary

interfaces, and their manufacturers supply only binary drivers. Unlike disks with standard IDE,

SATA, or SCSI interfaces, or CPUs with standard instruction sets (e.g. Intel x86), there is no

industry standard interface for graphics cards beyond that of the minimally capable SVGA, which is

exactly what the virtualization tools export. Even if specific, high-performance graphics cards were

recognized and exported by the virtualization tools, implementation would be limited to platforms

with those cards. Effective platform expansion requires the availability of a virtual, high-performance

card architecture that can be exported from a heterogeneous collection of generic PCs or server

blades.
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In designing such an architecture, we have identified four design goals. First, the virtual ar-

chitecture must support drivers that require sophisticated, system-level components, in particular,

scheduling, memory mapping, DMA, and interrupt handling. Second, driver design for this virtual

architecture should require no specialized function calls to ensure that driver design is authentic.

The same Linux kernel functions used to access the real hardware, e.g., pci register driver(), should

be used, verbatim, to access the virtual hardware. Third, no modifications to the standard Linux

kernel are allowed. Functionality must be encapsulated in drop-in kernel modules, the standard tool

for dynamic kernel extensions and most device drivers. Finally, the system must be easily reconfig-

urable, so that different (virtual) card architectures can be quickly designed and implemented.

Design and implementation are complete, and details are described herein. With the virtual

device architecture, we have removed the principal roadblock to including the device driver devel-

opment project in a course supported entirely by virtual systems. We thus describe the deployment

of virtual CPSC 822, where lab machines are no longer physical machines in a dedicated lab but are

virtual machines residing in an IBM BladeCenter cluster. We also note that the virtual architecture

allows concurrent development of new hardware designs and supporting system software.

Another key, motivating project from CPSC 822 is writing a disk scheduler of a new design.

CPU speeds have increased by orders of magnitude over last 10 years, but disk speeds are essentially

unchanged. Thus, disks have become common performance bottlenecks, and any improvement in

access times, say through scheduling, can offer substantial benefits. Disk scheduler development

can be carried out easily on a virtual machine, but the goal of any new scheduler is improved

performance. Measuring the performance of virtual disks in a way that would allow prediction of

the performance of real disks continues to be a difficult problem due to the layers of abstraction

between the virtual disk and physical disk. In a virtual machine, the virtual disk may actually reside

on a Network-Attached Storage (NAS) system across multiple disks. Thus, the access speed to the

virtual disk will never match that of a targeted real device. Our goal is to provide a kernel module

that will accept a minimal description of a targeted, real disk drive and then intercept and modulate

that performance of the system virtual drive. We propose the introduction of Virtual Performance

Throttles (VPTs) to effect this design. As we will see in Section 5.1, with careful study, a simple

model of any physical disk can be created and used in configuring the VPT. We extend the virtual

device architecture to alter the performance of the disk request path in the kernel. This design, in

effect, incorporates an entire operating system as a simulation tool.
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1.1 Organization of this Document

In the next section we briefly describe related work in virtualization of both operating systems and

access to hardware-accelerated graphics. We also include background on Linux kernel modules,

character devices and kprobes, the principal tools used in our implementation. In Section 3.1 we

provide an overview of the virtual architecture of our system, which is composed of three interacting

code modules: one at the user level and two at the kernel level. Sections 3.2 and 3.3 describe two very

different performance evaluations of our system: the former evaluates the rendering performance of

a virtual graphics card, and the latter evaluates the performance of a class of graduate students

who were given the task of writing drivers for a virtual graphics card. In Section 4, we provide an

overview of the lab environment deployed for the current virtual Computer Science 822 class and

discuss several challenges encountered and their solutions. In Section 5 we discuss preliminary and

planned work on VPTs and virtual device generation tools. Conclusions follow in Section 6.
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2 Background

2.1 Virtualization

System virtualization has been of interest to the computing community since at least the mid-

1960s, when IBM developed the CP/CMS (Control Program/Conversational Monitor System or

Cambridge Monitor System) for the IBM 360/67 [4]. In this original design, a low-level software

system called a hypervisor or virtual machine monitor sits between the hardware and multiple guest

operating systems, each of which runs unmodified. The hypervisor handles scheduling and memory

management. Privileged instructions, those that trap if executed in user mode, are simulated by the

hypervisor’s trap handlers when executed by a guest OS.

Aspects of the architecture of the host machine affect the difficulty of constructing a secure

and efficient hypervisor. These elements are described from a somewhat formal perspective by

Popek and Goldberg [11]. They characterize as sensitive those instructions that may modify or

read resource configuration data. They show that an architecture is most readily virtualized if the

sensitive instructions are a subset of the privileged instructions.

In the x86 architecture, a relatively large collection of instructions are sensitive but not privileged.

Therefore, a guest OS running at privilege level 3 may execute one of them without generating a trap

that would allow the hypervisor to virtualize the effect of the instruction. A detailed analysis of the

challenges presented by these instructions is presented by Robin and Irvine [12]. For completeness,

we include two such examples here:

1. Because reading x86 system configuration registers is not privileged, a guest OS may read and

store the contents of the CS (code segment) register, which contains the privilege level. Upon

inspection of the saved value, the guest OS could see that the kernel is actually executing at

privilege level 3, instead of the expected level 0, and incorrectly infer that a catastrophic failure

has occurred. Similarly, the Linux kernel function do signal() tests the saved CS register of the

caller and takes different paths based on its value. An unmodified guest Linux would always

see the same value and then sometimes take the incorrect path.

2. When the processor is executing at privilege level 0, POPF (pop flags) can modify both the

I/O privilege level and the interrupt enable flag. However, when executed by a guest OS at

privilege level 3, changes to the I/O privilege level and the interrupt enable flag are simply

suppressed. When this occurs, the guest OS and hypervisor may have inconsistent views of

whether or not interrupts can be delivered to the virtual machine.
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The designers of VMWare provided the first solution to this trapping problem by using a binary

translation of guest OS code [17]. In another approach, Xen [1] provided an open-source virtualiza-

tion of the x86 using paravirtualization, in which the hypervisor provides a virtual machine interface

that is similar to the hardware interface but avoids the instructions whose virtualization would be

problematic. Because those instructions are avoided, each guest OS must then be modified to run

on the virtual machine interface.

Much of the difficulty of virtualizing the x86 architecture has been removed with the 2005 and

2006 extensions to the architecture, the Intel VT-x and AMD-V. The extensions include a “guest”

operating mode, which carries all the privilege levels of the normal operating mode, except that

system software can request that certain instructions be trapped, and a hardware state switch

to/from guest mode that includes control registers, segment registers, and instruction pointer. Exit

from guest mode generates a hardware report. These extensions have allowed the development

of a full virtualization Xen, in which the guest operating systems can run unmodified, and the

Kernel-based Virtual Machine (KVM) [7], which uses a standard Linux kernel as hypervisor. The

KVM-supported kernel includes a character device, (/dev/kvm) whose ioctl() calls can create new

virtual machines, allocate virtual machine memory, read and write virtual CPU registers, and inject

interrupts to and run virtual CPUs.

Nevertheless, VMWare, Xen, and KVM are inadequate for a project in graphics card driver de-

sign because they export only basic, SVGA graphics cards to the guest systems. With the lack of

standardization and proprietary interfaces for GPUs, virtualization at the graphics API level, rather

than the architecture level, has become the focus area of rapid development. With Workstation 6.5,

VMWare does support hardware-accelerated graphics in Windows XP guests, but this is virtualiza-

tion at the graphics API level, not the card level. The VMGL system [8] allows hardware accelerated

OpenGL applications to run inside virtual machines provided by any of VMWare, Xen, or KVM,

and it works with ATI, Intel, or NVIDIA cards. VMGL uses the machine’s loopback interface and

a transport based on WireGL [6]. It is similar in spirit to Virtual GL [15], which allows low-cost,

remote visualization by rendering on highly accelerated servers and then, through a suitable trans-

port, pushing pixels to less capable clients. Both systems probably trace their origins to Stegmaier

et al [13].

Thus, although we can access the performance of a high-speed graphics card within virtual

machines, we cannot, through available tools, access the architecture of such a card, which is the

goal of device driver development.
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2.2 Kernel Modules and Character Devices.

The Virtual Architecture, described in Section 3.1, makes extensive use of the Linux kernel module

facility. Kernel modules are collections of functions that can be dynamically loaded to extend the

capabilities of a running base kernel. Two of the functions in the collection are identified as special:

the module init() function is executed when the module is dynamically loaded and the module exit()

function is executed when it is removed. Modules can export their functionality to the running base

kernel (or other modules) via an EXPORT SYMBOL() macro.

The structure of the collection of functions that comprise the module is otherwise arbitrary, but

in practice the most common design is probably one which structures the module as a collection of

file operations that operate on a special type of file, called a character device. Character devices are

created by the mknod command, which takes a target name and a target device number as arguments.

The device number usually corresponds to the device identifier that is on-board a physical card, but

it need not, as character devices can be entirely logical constructs. The file operations that operate

on character devices have fixed signatures (specified in the kernel include file, fs.h) and are invoked

by corresponding system calls from the user level, but their implementation is at the discretion of

the module designer. The most commonly implemented file operations are open, release, mmap, and

ioctl. The ioctl() call is particularly useful, in that one of its arguments is a command identifier,

which can be used in a module switch() statement to provide a wide variety of capabilities.

The module init() function typically connects the module’s file operations to the character device

structure (struct cdev) via the kernel’s cdev init() function and connects the character device number

to this same structure with cdev add(). It can then invoke a scan of the PCI bus in search of a

physical card with the target device number by a call to pci register driver(). On success, the scan

will provide an address from which key card information, e.g. physical base addresses and memory

sizes, can be read and stored in the module’s structures.

2.3 Kernel Probes

The kernel probe or kprobe utility was designed to facilitate kernel debugging [10]. It first appeared

in Linux kernel 2.6.9 and is fully supported in i386, x86 64, ia64, and Power architectures. This

utility has evolved over time and now allows for multiple probes to be attached to the same point

in the kernel, multiple probes per CPU, and multiple instances of the of the same probe running on

different CPUs.

All kprobes have the same basic operation. A kprobe structure is initialized, usually by a kernel
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module, to identify a target (kernel) instruction and specify pre-handler and post-handler functions.

When the kprobe is registered, it copies the target instruction and replaces it with a breakpoint.

When the breakpoint is hit, the pre-handler is executed, then the copied instruction is executed in

single step mode, then the post-handler is executed. Finally, a return resumes execution after the

breakpoint. There are two variations of the kprobe supplied with Linux: the jprobe and the kretprobe.

The jprobe or jump probe is intended for probing function calls, rather than arbitrary kernel

instructions. Conceptually, it is a kprobe with a two-stage pre-handler and an empty post-handler.

On registration, it copies the first instruction of the registered function and replaces that with the

breakpoint. When this breakpoint is hit, the first-stage pre-handler, which is fixed, is invoked. It

copies both registers and stack, in addition to loading the saved instruction pointer with the address

of the supplied, second-stage pre-handler. The second-stage pre-handler then sees the same register

values and stack as the original function.

The kernel return probe or kretprobe is intended for probing the return value of a function call. A

kretprobe is attached to a function at its entry point and when this function is called, the probe point

is immediately hit. A special pre-handler saves the return address of the caller and replaces it with

the address of kretprobe trampoline(). When the function reaches the return, kretprobe trampoline()

hands control over to the kretprobe handler supplied by the user and sets its return address to the

original caller.

While most functions can be probed in the kernel, there are two exceptions: inline functions

and functions declared with the kprobes qualifier. Inline functions are inserted into the body of

caller function at compile time. Thus, they are not present in the compiled version of the kernel and

the kprobe utility is unable to find them. The kprobes qualifier instructs the compiler to place a

function in a location in memory where the kprobe utility is forbidden from attaching probes. This

forbidden area is where most of the kprobe utility itself and certain other functions that the kernel

developers have decided would be hazardous to probe all reside.

Although the kprobe, jprobe, and kretprobe utilities are quite useful and flexible, none were ade-

quate for the fundamental task required by the design of our virtual architecture, namely, dynamic

replacement of an entire kernel function with a custom version. Thus we have designed a new type

of probe, the intercept probe, which we will describe in the next section and which accomplishes

this task.
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3 Virtual PCI Framework

3.1 Virtual Architecture.

The Virtual Architecture comprises three interacting code modules, shown in Figure 1, to replace

the standard graphics cards: the Virtual Console Daemon, the Virtual GPU, and the Virtual PCI

Bus.

Figure 1: Virtual Architecture.

3.1.1 Virtual Console Daemon

The Virtual Console Daemon (VCD) is a user-level process that simply reads the virtual device

registers, which are part of the Virtual Graphical Processing Unit (VGPU), and updates the display

accordingly. The read operation could be executed via a standard system call (ioctl() on the VGPU

device), but it is faster to memory map the virtual registers of the VGPU back to the user space of

the VCD and read them directly in user space. To avoid busy-waiting on virtual register updates,

the VCD will suspend on a kernel wait queue if it detects no register changes since its last read. It

8
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simulates entry to and exit from graphics mode by starting and stopping an XWindows server. An

X server serves this purpose well as it can easily be configured to run without borders or icons, which

gives the appearance of an “empty” underlying framebuffer. Graphics primitives are generated by

the VCD using a combination of OpenGL and XDraw commands. Thus, although the VCD must

incorporate a simulator of the target virtual architecture, it is a functional-level simulator, not a

command-level interpreter.

If the VCD detects changes to the DMA registers on the VGPU, it is responsible for simulating

the DMA transfer by reading buffers of (graphics) commands from the device driver and executing

them. When a buffer has drained, the VCD must initiate the sequence for the VGPU to generate

an interrupt to the device driver, if the driver has enabled DMA-completion interrupts on the

VGPU. With the exception of the direct reads of the memory-mapped virtual registers, the VCD

communicates with the VGPU through ioctl() calls.

3.1.2 Virtual PCI Bus

A long term goal for the project is to allow multiple, simultaneously enabled, virtual PCI devices,

and so we have elected to gather common functionality into a single module, the Virtual PCI Bus

(VPCIB), with which lightweight, device-specific kernel modules may then register and share in

its exported functions. The VPCIB is a Linux kernel module which actually contains most of the

functionality, including the intercept probes. Functions exported from VPCIB and executed by

VGPU include suspending the VCD on a kernel wait queue, write protecting the page of virtual

registers, and generating an interrupt when the VCD makes a buffer completion ioctl() call.

With careful use of the pre-handler and post-handler, an entire kernel function can be replaced

dynamically with an alternative version. For this task, we modified the jprobe utility to create an

intercept probe (iprobe). Our iprobe second-stage pre-handler decides whether or not to replace

the original function. If it decides to do so, it makes a backup copy of the saved (function entry)

instruction and then overwrites the saved instruction with a no-op. As is standard with a jprobe,

the second-stage pre-handler then executes a jprobe return, which traps again to restore the original

register values and stack. The saved instruction (which now could be a no-op) is then executed in

single step mode. Next the post-handler runs. On a conventional jprobe, this is empty, but on the

iprobe, the post-handler checks to see if replacement was called for by the second-stage pre-handler.

If this is the case, the single-stepped instruction was a no-op. The registers and stack necessarily

match those of the original function call. We simply load the instruction pointer with the address of

the replacement function, restore the saved instruction from the backup copy (overwrite the no-op),

9
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and return. With this method, we can intercept and dynamically replace any kernel function of our

choice.

It is possible to have two calls to the same probed function, one that we should intercept and the

other that we should ignore. This can lead to an interesting race condition on multiprocessor (SMP)

systems which, in worst case, could result in a kernel panic. Recall, the second-stage pre-handler

might or might not replace the saved instruction with a no-op instruction. The swap of instructions

introduces a small time window in which the first call could affect the second. For instance, suppose

the first call is one that installs a replacement of the original kernel function and the second does

not. The second call could run through the probe with the no-op instruction still in place from the

first call. It would then miss that first instruction of the target function, which it should execute.

This can be avoided by acquiring a spinlock in the second-stage pre-handler and releasing it in the

post-handler.

We use the iprobe to intercept several functions. We intercept pci register driver(), which device

drivers use to scan the PCI bus. Another function we intercept is dma alloc consistent(), which

a driver would call to allocate its own DMA buffers. We intercept this only to capture the buffer

addresses, which the VCD will ultimately need to read and execute buffer contents. We also intercept

remap pfn range(). A driver may choose to memory map some or all of its device register space back

to the user application’s address space. We need to detect writes to the page of virtual registers,

and if this page has been memory mapped to user address space, writes can come from both user

virtual addresses and kernel virtual addresses.

The reason we need to detect writes is simply for the VCD wakeup mechanism. As noted earlier,

when the VCD detects no register change, it suspends itself through an ioctl() call to the VGPU

that places it on a kernel wait queue. Within the call, prior to the suspension, it write-protects

the page of virtual registers. The next direct write to the page, either by the driver or by the user

application (under memory mapping) generates a page fault. We intercept do page fault() to test

whether the faulting address is, via user page table or kernel page table, within the page of virtual

registers. If so, we wake the VCD, make the page writable again, and return, which allows the write

to complete.

3.1.3 Virtual GPU

The VGPU is another Linux kernel module. On initialization, it allocates a kernel page to hold

the virtual device registers. On a real PCI device, the device registers would normally appear at

some high physical address found during a driver scan of the PCI bus. The driver would then use
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ioremap() to map this register bank to kernel virtual space for driver use. The VGPU must also

register itself with the VPCIB. It passes along information, such as the device IRQ, device IDs, and

register locations, needed by the VPCIB to communicate with device drivers. The VGPU is not an

active device until it receives communication from the VCD via the ioctl() call.

Generating an interrupt in the VGPU is relatively straightforward. On the Intel architecture,

we can use the int n instruction with n ≥ 32 or n ≥ 48 on 32-bit and 64-bit systems respectively.

The Linux kernel will use the Interrupt Descriptor Table (IDT) to invoke the handler registered

for IRQ n − 32 or n − 48. Thus we can supply the driver with an IRQ of our choice during the

intercepted pci register driver() command and then have the VGPU simulate that interrupt with

the int instruction whenever the VCD detects an end of buffer. Again an interesting race condition

arises on a multiprocessor (SMP) system. The interrupt handler in the driver may be updating the

DMA registers in the page of virtual registers at the same time the VCD is scanning the virtual

registers looking for changes.

When the VCD is processing DMA commands with interrupts enabled, it will notify the VGPU

to invoke a sleep after a buffer has finished processing. If the VGPU invokes a sleep before the

device driver interrupt handler completes, it may not be awakened. There is a two-fold solution for

this. We attach a jprobe to request irq() that is called when a device driver registers an IRQ handler.

In the second-stage pre-handler we register a kretprobe on the driver’s interrupt handler that was

passed in to the request irq() call. This probe will then execute when the handler is finished and

will wake up the VGPU.

3.2 Rendering Performance.

The rendering performance of the virtual architecture cannot possibly match that commonly seen

from executing directly on hardware GPUs. As noted earlier, the goal of the virtual graphics card

project is not to achieve high-speed rendering but rather to provide a completely portable platform

for driver design and development. The only issues are whether the penalty is so great that it

precludes effective system use and, if not, whether the virtual architecture’s rendering performance

scales properly with task difficulty.

We conducted a series of tests comparing the rendering performance of a somewhat dated, but

3D hardware-accelerated graphics card, the 3DLabs Permedia 2v, for which the hardware reference

manual and programmer’s reference manual are available online [14], with a virtual version of the

same card, both installed on a Dell Optiplex GX520 with a 2.8GHz Intel Pentium D CPU and 1GB
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triangles of height 20 pixels triangles of height 100 pixels

Figure 2: Rendering Samples

main memory. running a Linux 2.6.26 kernel.

At the user application level, the tests used the card’s DMA capability to render 1 million smooth-

shaded triangles as quickly as possible where the only variable was triangle size. This rendering test

did not make use of all of the registers on the real Permedia 2v card, and so the virtual version could

use a reduced register set. The driver for the real card and the driver for the virtual card were thus

identical, except for register count, register names, and static values used in register initialization.

Screen captures during rendering are shown in Figure 2.

Run times were measured from the user application level using the standard Pentium cycle

counter capture, asm(“RDTSC”). Results are shown in Table 1. The triangle size is the height mea-

Triangle Real Virtual Slowdown
Size sec. sec. Multiplier
20 3.876 136.0 35.17
40 10.71 227.7 21.26
60 20.76 340.4 16.39
80 24.23 476.7 13.93
100 51.03 632.5 12.39

Table 1: Rendering Performance Comparison

sured in pixels from the so-called dominant edge, that with maximum y range, to the opposite vertex.

We see that the relative performance of the virtual card improves rather rapidly as a greater share

of the task effort is shifted toward actual rendering and away from DMA buffer handling, page-fault

interception, instruction decoding/interpreting, and interrupt injection. Even the longest rendering

12



Zachary Harrison Jones Dissertation Proposal

time for the virtual architecture, 632.5 seconds, or 1,581 triangles/sec., was judged adequate for

driver design purposes.

3.3 Student Performance.

We tested the feasibility of using the virtual architecture for driver design and implementation in

CPSC 822 during the first four weeks of Spring semester of 2009. Class lectures during the period

focused on Linux kernel modules and principles of driver design. Much of the information can be

found in Corbet et al [3]. Student teams composed of 4 graduate students were given hardware

reference manuals and programmer reference manuals for the virtual card described in the previous

section. The manuals detailed both the capabilities that the driver was to deliver and the interface

it was to provide to the application layer. Teams were assigned to specific machines on which we

had installed the virtual architecture. They were not told that the card was virtual.

All of the teams delivered an operational driver on time. This was somewhat unusual, compared

to the collective performance of teams working on real hardware in previous semesters. In most

previous semesters, at least one team had serious driver faults. We tentatively ascribe this to the

fact that the virtual hardware is more tolerant of timing errors caused by less than careful saving

and restoring of VGA text mode registers. Circumventing these errors is often a time-consuming

challenge for students.

Nevertheless, none of the students’ drivers was SMP-safe, and this was disappointing. The most

common problem was a race condition between the interrupt handler and the driver ioctl() code

that handled command buffer queuing. Failure to adjust the use of spinlocks to account for the

possibility of a rapid succession of multiple buffer completion interrupts could cause a graphics

subsystem deadlock. Although this problem is somewhat subtle and rarely occurs during normal

operation, in previous semesters at least one team was able to recognize it and handle it.

As a final experiment, we wanted to determine, indirectly, whether the students realized that the

graphics card was virtual. We added an extra credit question to the in-class exam that was given in

the week following the project deadline. We asked them to estimate the best online price for that

model of graphics card for which they had just built a driver. One student clearly realized the card

was virtual and answered, “$0”. The others gave estimates ranging from $100 to $1,000, with an

average above $200. Figure 3 gives a distribution of the students answers.
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Figure 3: Student Evaluation of Price of the Zach1
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4 Virtual Operating Systems Lab

4.1 The Virtual Lab

With the virtual architecture in place, we are now able to deploy a KVM-based, virtual PC lab in

which the virtual PCs export the entire systems-level interface required for this course. As a result,

the second offering of Virtual CPSC 822 is underway as of this writing. The virtual PC lab is hosted

on only 6 IBM 8853AC1 dual-Xeon blades in a 42-blade eServer BladeCenter.

Of course, KVM alone does not allow for emulation. It must be used in conjunction with a

user-space program, QEMU [2]. Other tools such as libvirt [9] and the Virtual Machine Manager

[16] allow for easy creation, deployment and management of virtual machines, but we chose not to

use these. We have found that custom scripts give us the control that we need while still providing

the students with a simple interface through which to access their virtual machines.

4.1.1 Creating and Maintaining VMs

Creating a KVM virtual machine first starts with creating a virtual hard disk. Figure 4 shows the

QEMU command for creating a virtual, 30GB hard disk. The -f option specifies the file format.

For our virtual lab, we chose to use the qcow2 format. One benefit of this format is the minimal

footprint it leaves on the physical drive. It will only use space on the physical drive for those bytes

actually allocated in the virtual disk.

qemu-img create -f qcow2 822master.img 30G

Figure 4: Creating a Disk Image

Next,the empty virtual disk must be loaded with a base operating system, in this case CentOS

5.3, 64-bit. The command is shown in Figure 5. Note that the drive type is specified as SCSI, not

qemu-system-x86 64 -drive file=822master.img,if=scsi,bus=0,unit=0
-cdrom CentOS 64-5.3.iso
-boot d -m 4096

Figure 5: Installing CentOS 5.3 on a Virtual SCSI Disk

the default IDE, because CPSC 822 includes a full traversal and detailed examination of the SCSI

read path. A minor drawback to this particular installation command is that the automatic re-boot

afterward fails, but the system is easily re-booted thereafter as shown in Figure 6.

The BladeCenter, on which the virtual machines are located, is isolated from the main campus

network via a gateway machine accessible through SSH. Each two-person team of students is given
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qemu-system-x86 64 -drive file=822master.img,if=scsi,bus=0,unit=0,boot=on

Figure 6: Launching a VM with SCSI Hard Disk

a lab account that is unique to the BladeCenter. Accounts are synchronized among blades with NIS

(Network Information Service). Home directories are shared across all blades by NFS (Network File

System) from a NAS (network-attached storage) device.

A virtual machine image is placed in each team’s home directory. Rather than a full image, we

use a clone image. The qcow2 image format allows for multiple clone images to use a common base

master image. When a virtual machine using a clone image reads an original file, it reads from the

master image. When a virtual machine writes a file, the copy-on-write is executed and the new

contents are written to clone image. After the copy-on-write, only the clone image is accessed when

either a read or write is executed on the modified file. The command to create a clone image from

a base master image is shown in Figure 7. For 26 students in pairs we still require a minimum of 13

qemu-img create -b 822master.img -f qcow2 822lab.img

Figure 7: Creating Clone Images

virtual machines, each with a full CentOS 5.3 installed. The full installation occupies approximately

6 GB, much of which remains read-only throughout the semester, and thus the use of the clones

saves approximately 72 GB per set of virtual machines.

However, in our lab environment, saving space comes at the cost of performance. When all 13

virtual machines are actively accessing the virtual disks, the master/clone images become a point of

contention and slow down performance. We measured the time required to build a full Linux 2.6.30

kernel on a clean source tree in two environments: 6 virtual machines with standalone hard drives

and 6 virtual machines sharing one master hard drive. The build time on the cloned hard drives

took approximately 45 minutes, but the build on the stand alone hard drives took approximately

35 minutes, a 22% reduction. To balance performance and storage, we decided to use only 2 clones

per master image. This configuration still saves 36 GB and yields acceptable performance.

4.1.2 Using the Virtual Machines

All students must first access the gateway before proceeding to a KVM-enabled blade. Teams access

a KVM-enabled blade by the go blue script (example in Figure 8) that is placed in their home

directories. Each script will SSH to a predetermined blade to provide some (static) load-balancing

across available blades. Each team has a password-less SSH key, and so they do not need to re-enter
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#!/bin/bash
ssh -Y blue30

Figure 8: go blue

their passwords when executing go blue. Teams could manually execute an SSH command to access

other blades in the BladeCenter, and we do not explicitly prevent this, but it could be prevented by

using the netgroups feature of NIS.

To simplify launching virtual machines and to protect the students from themselves, we provided

the script start lab vm shown in Figure 9. The script checks for a lock file to prevent multiple virtual

machines from launching with the same primary virtual drive. Having multiple virtual machines

writing to a single virtual drive (a file) will result in data corruption and a system crash.

#!/bin/bash
if test -f $HOME/kvm/.hd lock

then echo “Oops...HD already in use!”
exit 1

fi

touch $HOME/kvm/.hd lock
/usr/local/kvm/bin/qemu-system-x86 64 -m 512

-drive file=$HOME/kvm/822lab.img,if=scsi,bus=0,unit=0,boot=on
-drive file=/home3/822lt00/kvm/usr local.img,if=scsi,bus=0,unit=1

rm $HOME/kvm/.hd lock
echo “VM Powered Off.”

Figure 9: start lab vm

A new addition to the virtual machines this semester is the shared second drive (usr local.img)

that every virtual lab machine mounts. Throughout the course, the virtual lab machines need to

be upgraded to enable new lab exercises and major course projects. Launching each individual

virtual machine and making the changes would be a slow, tedious, and error-prone process. With a

common shared drive, changes only need to be made once. Unlike the primary drive, this image file

has read-only permissions. There will never be any writes to the virtual drive, and therefore it is

safe for all lab machines to mount this drive concurrently. However, the virtual lab machines cannot

be running when usr local.img is updated. To prevent teams from launching their virtual machines

during these maintenance periods, we use additional lock files in the team directories.

With this configuration, the virtual monitor is displayed on the student’s local machine after

being forwarded through an SSH X11 Tunnel. An alternative to this approach is to launch the

virtual machine as a daemon and direct the monitor through a VNC server. While this is the

default method used by Virtual Machine Manager, it is cumbersome to use in the virtual CPSC
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822 lab. Since there is a gateway separating our BladeCenter from the network, the VNC ports are

not easily accessible. As with any operating system development, the virtual operating system will

crash often, and running the virtual machine as a daemon complicates the process of restarting and

power cycling.

While the SSH X11 Tunnel option is easy for students to use, it is very CPU intensive and this

can create a significant performance bottleneck on our 3.2 GHz, Pentium 4 (with Hyper-Threading)

gateway machine. Each tunnel requires packets to be copied back and forth between kernel and user

space and for the packets to be decrypted and encrypted. An alternative to SSH X11 Tunnels is to

use X11 Forwarding. X11 Forwarding does not use encryption, and the packets traveling through

the gateway machine are handled solely in kernel space. An example command sequence to use X11

Forwarding is given in Figure 10. Six virtual machines using X11 Tunneling will maximize CPU

> xhost +
> ssh <gateway machine>
> ./go blue
> export DISPLAY=<ip of local machine>:0
> ./start lab vm

Figure 10: Using X11 Forwarding to access VM monitor.

usage (64.5% user, 31.4% system, 4.1% idle) on the gateway machine. Six virtual machines using

X11 Forwarding will use only 32% of the CPU (0.1% user, 29.7% system, 70.2% idle) on the gateway

machine.

4.2 Timing

A critical component of the course is accurately measuring subsystem response time and throughput,

such as measuring the performance of disk I/O under various scheduling algorithms. With the

2.6.18 kernel provided in CentOS 5.3, the default clocksource is based on the jiffies counter and

a programmable interrupt timer (PIT). Under heavy load, this clocksource is inaccurate. When

performing a full kernel build (make bzImage, make modules, make modules install, make install) on

a clean kernel source tree, one can easily find the system time in the virtual machine to be skewed

by over 60 seconds forward or backward from the host system time. Clock skews into the future

confuse the make system, and this can yield incomplete builds. Thus, in order for a kernel build

to work properly, the build directory must be cleaned before the next build attempt. This can be

an expensive operation, and it negates the benefits of incremental compilation and linking. With

both forward and backward clock skewing, timing measurements will be inaccurate, resulting in all
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time-related performance measurements being unreliable.

The cause of the skew is that when the system is under heavy load, some PIT interrupts will

be missed, and the hypervisor will attempt to re-inject the interrupts. The re-injections can cause

the clock to skew either forward or backward. QEMU supports the option -no-kvm-pit-reinjection,

which will disable reinjection of the interrupts into the virtual machine. Launching QEMU with

this option will guarantee that the clock will not skew forward, and this prevents incomplete builds

resulting from a confused make system, but it still allows the clock to skew backward.

A paravirtualized clock was introduced into the mainline 2.6.26 Linux kernel for use with KVM-

based virtual machines to solve clock skewing in both directions. When this option is compiled into

the kernel (CONFIG PARAVIRT CLOCK=y) and is running inside a KVM virtual machine, the OS

will receive the TSC information from the hypervisor when updating the system time. We find that

with the paravirtualized clock, the system time in the virtual machine is always within milliseconds of

the system time on the host machine. This may not be accurate enough for networking performance

measurements. Nevertheless, for disk scheduling performance measurements and using the make

system, it is certainly adequate.

4.3 Performance

While KVM utilizes the native virtualization features of Intel VT and AMD-V, it still relies on

QEMU for providing the interface to the virtual system, and this may introduce a significant perfor-

mance penalty. In estimating the penalty, it is important to realize that a host system may migrate

virtual machines among different cores on the system. The Linux utility taskset allows a user to

set (or change) a process’s CPU affinity or pin that process to one or multiple virtual CPUs. An

example invocation of taskset is shown in Figure 11. The command arguments are a bitfield to

specify target CPUs and the process to launch, along with its parameters.

taskset 0x11 ./light8 ii9.ex.perked > out.lit

Figure 11: Launching a program pinned to the virtual CPUs 0 and 5.

Since a virtual machine is a process on the host, it can pinned to a group of CPUs in the same

manner as a process. The dual-Xeon blades on which we are deploying the virtual machines are

based on the Core 2 Quad architecture. In this processor architecture, a pair of cores shares an

L2 cache, and there is no L3 cache. In our testing, we chose to pin the virtual machine to a pair

of cores, as this prevents a migration that involves moving across processors or moving across L2
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caches. Figure 12 shows a virtual machine configuration with 1 CPU pinned to the first pair of cores

on the blade.

taskset 0x3 qemu-system-x86 64 -drive file=822kvm.img,if=scsi,bus=0,unit=0,boot=on

Figure 12: Launching a VM pinned to 2 cores with shared L2 cache

For tests on the real machine, we pinned the workload process to the first pair of cores on the

blade. For tests on the virtual machine, we pinned the VM process as in Figure 12. Since our

principal interest was the computational penalty from KVM, rather than the I/O penalty from the

combined effects of KVM and QEMU, our test workload was a compute-intensive application taken

from three-dimensional computational fluid dynamics (CFD) [5]. Table shows the results of running

the CFD code on the real and virtual machines. We see a performance penalty of 2.71% (without

CPU affinity) and 0.05% (with CPU affinity) for running the CFD code inside a virtual machine.

On the Metal In the VM
Unpinned 1634.56 1678.88
Pinned 1651.86 1652.68

Table 2: Runtime in seconds of CFD code for various configurations
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5 Additional Proposed Work

5.1 Virtual Performance Timers

In addition to the graphics driver project, another key project for CPSC 822 is writing a disk

scheduler of a new design. The goal of any new disk scheduler design is increased performance under

a targeted class of workloads. Scheduler design and implementation can be carried out easily in a

virtual machine. However, measuring the performance of virtual disks in a way that would allow

prediction of the performance of real disks continues to be a difficult and important problem. The

cause for this lies in abstraction: when a virtual machine requests a block from the virtual disk,

QEMU translates the block request to a location in the virtual disk image (a file) and requests the

block from that file. In the case of the virtual CPSC 822 lab, the image files are located on an NFS

exported NAS device, and so the virtual machine incurs additional overhead for the request to travel

across the network to the NAS device and through the request path on that device to the particular

disk(s) where the block resides.

While paravirtualized devices could provide increase performance, such would still not remove all

the layers of abstraction. The NAS storage comprises multiple hard disks in a RAID configuration,

and so individual accesses to the virtual disk can be distributed across multiple physical disks.

A possible solution is to use the physical disk option in QEMU. The physical disk option limits

the number of virtual machines per server supported, based on the number of drives available.

Otherwise, again, data corruption would occur when multiple virtual machines write to the same

drive. Another solution is to implement a disk emulator within the OS or QEMU. Following the

design goals from the introduction, we will design an emulator facility as a module extension to the

Linux kernel, thereby allowing the solution to be portable and minimizing new code to study and

modify. Further, with this approach we can leverage the tools, particularly the new intercept probes,

in the existing framework for development.

This leads us to the concept of Virtual Performance Throttles. We start by specifying a seek

model for the physical drive. The expected completion time (T ) of a request is one-half the time to

complete a revolution (R) plus the product of the seek time (S) and the seek distance x, expressed

as a fraction of the maximum distance (D). Thus

Tr =
Rr

2
+ Sr ·

xr

Dr

We can expect the linear model of the real disk to be a close fit to the observed seek times
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Figure 13: Seek Time of Virtual Machine Disk

from the targeted real disk. Nevertheless, the linear model of the virtual disk may exhibit wide

disparity from the observed seek times on the virtual disk, since it is only a best-fit linear model.

Seek times on the virtual disk may exhibit significant non-linearities due to non-linear mappings

between virtual logical blocks and physical blocks. In addition to the mapping between blocks,

RAM and caches in NAS devices can introduce further disparities. With a large, enterprise-class

NAS device that contains gigabytes of RAM, it is possible for an entire virtual machine disk to be

cached into memory, resulting in near constant access time for all virtual logical blocks. Figure 13

shows sample average seek times on a virtual disk when it is not cached and the same virtual disk

when it is cached on our NAS device. It should be noted that hosting virtual machine hard disks on

Solid State Drives will exhibit similar performance characteristics as the cached virtual machine.

Ideally, for a given virtual distance, xv, and a target performance scale, k, we would like the

virtual machine to see a completion time of k (Rr/2 + Sr (xr/Dr)) = k ·Tr, but it will see a different

time, Tv. To get the target completion time k · Tr, we need to delay Tv by an amount, δ. To find

δ, we need to calculate Tr for a given xr. Therefore, we need to scale xv to xr using the ratio

xv/Dv = xr/Dr, and calculate δ as follows

δ = k · Tr − Tv

= k

(

Rr

2
+ Sr

(

xr

Dr

))

= k

(

Rr

2
+ Sr

(

xv

Dv

))
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We have a mapping between the virtual disk and the linear performance model of the the target

physical disk. This leaves properly selecting a value for the scale factor k to reach the the targeted

completion time of our targeted device. We can calculate a value for k from our model, but the

model does not account for the changes in the virtual disk performance, which, as Figure 13 shows,

can be drastic. Other factors that can also change the performance include server load and network

congestion. A design goal of making the VPTs dynamically self-scaling is added to address this

issue.

The VPT will constrain the flow of disk requests being served in the kernel based on the linear

seek time model and the value of k. The VPT will use two probes in the generic SCSI driver: a

jprobe in the down path to record when requests leave for the virtual disk and an iprobe in the

up path to intercept and delay completed requests on return from the virtual disk. The jprobe, in

addition, will calculate the target completion time of the request utilizing the seek distance between

the current and last request. This information is the used by the iprobe to determine how long the

request should be delayed after arriving, and the iprobe will then place the request on a queue. The

queue is checked periodically with a timer. Once the target completion time has past, the request

is injected back into the SCSI Generic path.

Since the seek time on the virtual disk is subject to change, it is possible that a request will arrive

to the iprobe after the target completion time. This informs the VPT that the scale factor, k, is too

small for the observed performance and must be increased. If the VPT has a large queue of requests,

we know that the target performance is slower (target times longer) than observed performance and

the VPT needs to decrease k. When the VPT is dynamically scaling, it will be important to report

the value of k in order to scale results properly to the physical disk being modeled. This gives us a

feedback mechanism to compensate for variations in the virtual disk performance.

5.2 Virtual Device Generation Tools

Higher level software tools that assist in generating new virtual PCI devices from existing devices

would be of significant value here, both in the new product development line and in the educational

role, where a new device is required every semester. When considering the educational role, compo-

nents of the virtual graphics card that should change are register names, register locations, register

bit-field layouts, and bit-field values. Changing these do not affect the logic of the card, just how it

is referenced. To simplify this, a template model of a base virtual graphics card could be used with

a tool set to generate a custom card. Since the underlying functionality of the card is not being
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changed, the template model could be extended to include a programmers reference manual (PRM),

example device drivers, and example user space code.

Changing underlying functionality of a device, such as changing color palettes from RGB to

CMYK or basic primitives, would require several underlying changes. These include adding/remov-

ing registers and changing the underlying logic. This would also require substantial changes in the

section of the PRM dealing with how to render on the screen. It is possible that the template

concept could be extended to create a super template that has all component choices, and the tool

set would allow a user to select which components to enable. For successful creation of new devices,

it is important that the template device be well organized and take advantage of code reuse when

components need to be added or changed.
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6 Conclusions

We have provided the design and implementation of a virtual architecture that allows system-

level, functional emulation of high-performance graphics cards for the purposes of driver design

and development. We have tested this architecture on a class of graduate students who were given

the task of writing a driver and most did not even realize that the card was virtual. Rendering

performance through the virtual card was not strong, but acceptable for the purposes of instruction

and development.

We conclude that we have met design goals for the virtual card project, with one exception: the

goal of implementing this architecture with zero changes to the standard Linux kernel was missed,

by a single word. In the 2.6.26 and newer kernels, do page fault() is declared with the kprobes

qualifier, which precludes the use of kprobes to intercept this function. The concern is an infinite

recursion, should the kprobe handler page fault. Our handler writes only to a page table, which

will not fault, and so we simply remove the declaration and intercept as planned. Nevertheless, this

(removal) is a one-word kernel modification.

We believe that this system can have significant impact on the process of driver design. Driver

design, development and testing could proceed in parallel with new hardware development, thus

reducing time to market for new PCI products.

We believe that this system also has great application in academic instruction, and we are

underway in using a virtual lab for CPSC 822. The virtual environment we have built allows for

larger enrollment, better resource utilization, less administration, and discourages students from

seeking alternative methods to complete assignments.

The virtual lab is KVM-based, hosted on only 6 dual-Xeon blades, and provides the experimental

platforms for many graduate students. Some relatively simple, custom shell scripts manage resource

allocation and provide good performance, even under relatively heavy loads. Most of the difficulties

that arise in having students work at the systems level on virtual machines have been overcome.

Current development is proceeding in two directions. First, we are creating Virtual Performance

Throttles. These will allow us to model the performance of I/O devices. We will be able to predict the

performance of new algorithms and optimizations introduced into the kernel from model incorporated

into a virtual machines and without the devices being studied. Second, we are creating a tool set

to assist in the creation of new devices for the Virtual Architecture. These will allow for rapid
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prototyping of new derivative devices with minimal code changes made by the developer. With the

inclusion of these tools we believe that this will provide a complete tool set to use Linux as simulator

for instruction, development, and performance research.
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