
A Framework for

Virtual Device Drive Development

&

Virtual Device-Based Performance Modeling

Robert Geist ● Zachary H. Jones ● Mike Westall

Acknowledgements

 This research has been supported by

 IBM Faculty Award

 IBM Ph.D. Fellowship

 NSF Grant Award 0722313

Thesis Statement

We will provide solutions to problems in
operating system virtualization that have been
motivated by major projects in CPSC 822.

Motivation

 CPSC 822, Operating System Design: A Case Study

 Projects:
 modify schedulers for performance

 new kernels

 write/build drivers for real devices

 Limitations:
 dedicated hardware required (usually crashed)

 limited enrollment

 waiting list, every semester

Virtualization

 Since mid-1960’s

 Generally has been a difficult (expensive) problem

 Intel VT-x/AMD-V: Virtualization for the masses

 Large part of the course can be virtualized

 VMWare, KVM, VirtualBox

Real Challenges

 Device Driver Development

 Write real device drivers on virtual devices

 Virtual Lab for CPSC 822

 Real OS and performance work on virtual hardware

 Disk Scheduling

 Model real hardware in a virtual machine

Device Driver Development

 Device driver for non-trivial graphics card

 Formerly 3Dlabs Permedia2V

 Virtualization provides only a simple VGA controller

 Hardware accelerated graphics solutions virtualized at API
level rather than architecture level

 Experimental support for importing devices to virtual
machines starting to emerge

 Still leaves one more problem…

One Problem

 Virtualization of one architecture is inadequate

 Graduate students have been known to communicate with
one another

 Kernel changes (each semester) rendering last semester’s
driver inoperable

 But too many students waste time patching last semester’s
solution

 Solution? Replace the graphics card.

 Companies believe that giving specifications away would
increase the risk of competitors stealing trade secrets

Design Goals for Virtual Architecture

 Support sophisticated components:

 Requires scheduling

 Requires memory mapping

 Generates Interrupts

 Provides DMA

 Require no special function calls.

 No modifications to existing Linux kernel

 Virtual architecture that can be easily reconfigured
each semester

Device Driver

 Scan PCI bus for GPU
 Finds base address and IRQ

 Call ioremap()
 Map base address to kernel virtual memory

 Initialize registers
 Call request_irq()
 Register DMA interrupt handler

 In response to ioctl() from the user app:
 Memory map registers to user virtual memory
 Handle DMA buffers, queuing, and initiating

 In response to interrupt
 Interrupt handler is called and processes next DMA buffer

queued (if buffer queue is not empty).

Virtual Device Architecture

User
Application

Linux Kernel*

Device
Driver

User Mode

Kernel Mode

Interrupt

VPCI Bus

VGPU

VDA

VCD

Kprobes

Kernel Probes

 Debug mechanism to monitor events in a system.
 Probe almost any instruction in the kernel

 Pre-handler runs, execute probed instruction, post-handler
runs

 Three flavors
 Kprobe

 Jprobe

 Kretprobe

 Kprobe utility lacks ability to dynamically replace
any kernel function.
 Introducing Iprobes – Hybrid of Kprobe and Jprobe

VPCI Bus: Iprobes

 Use Jprobe to check function parameters

 If caller flagged as accessing VPCI device, intercept

 Temporarily replace probed instruction with nop

 Kprobe post-handler modifies the IP to address of
replacement function.

 Most VPCIB probes are Iprobes, a few are Jprobes

 Caveat: Probes cannot be attached to inline
functions or functions declared with __kprobes

VPCI Bus: Interrupts

 When a DMA buffer is finished, an IRQ must be raised
so the DD interrupt handler is notified

 How do you throw a hardware IRQ from software?

 Intel x86 instruction int is for generating software
interrupts

 x86 interrupt mapping starts at 32

 x86_64 interrupt mapping starts at 48

Detecting Writes to VGPU Registers

 Added VPCI Page Fault to the page fault handler
(do_page_fault())

 When device driver requests the memory to be mapped
with write permissions
 VPCIB intercepts

 sets the memory to read-only; flush TLB

 activates the fault handler

 When the device driver/user code writes to the memory
 Page fault exception

 do_page_fault() hands control to the VPCI fault handler.

 VPCI fault handler restores write permission, flush TLB, wakes
up the VCD, and returns execution to spot of the fault

VGPU

 Allocates a kernel page

 Registers the device with VPCI Bus
 Gives memory address, IRQ number, device IDs for use with

Iprobes

 In response to fault handler
 Wake up daemon

 In response to VCD
 When done processing registers, write protect the register

page, flush TLB, sleep

 Generate interrupt if DMA is running, sleep until device
driver interrupt handler finishes

VCD

Map register page from VGPU

Initialize registers

Use ioctl() to sleep

Forever {

if (register values changed) take action
e.g. start graphics mode, draw to the screen, initiate DMA

Use ioctl() to write protect the page and sleep

}

Status

 Successfully deployed in CPSC 822 for 3 semesters
 Spring 2009 – physical lab machines

 Fall 2009, Spring 2010 – virtual lab machines

 Kernel Modifications:
 Most are avoided by kernel probes

 Remove __kprobes from do_page_fault()

 Devices:
 Can write binary compatible device drivers for use with real

hardware

 Allow for parallel development of DD and HW

 TODO: Create device generation tools.

Performance

 Rendering

 Students

 All teams have been able to complete FIFO drivers

 Teams still have difficulty with SMP-safe drivers

Transparency to Students

0

1

2

3

4

5

6

$1,000 $500 $200 $100 $0

S
tu

d
en

ts

How much would it cost to buy a Zach1?

Real Challenges

 Device Driver Development

 Write real device drivers on virtual devices

 Virtual Lab for CPSC 822

 Real OS and performance work on virtual hardware

 Disk Scheduling

 Model real hardware in a virtual machine

The Virtual Lab

KVM/QEMU Virtualization

Access from campus
by gateway machine
via SSH. VMs stored on NAS,

accessed by NFS.

VMs run on 6 dual-Xeon blades.
Part of 42-blade eServer
BladeCenter.

Custom scripts used for managing and accessing lab.

Virtual Machines

 Create a virtual disk
• qemu-img create –f qcow2 822master.img

 Install OS into virtual machine
• qemu-system-x86_64 –drive file=822master.img,if=scsi,bus=0,unit=0

–cdrom CentOS_64-5.3.iso –boot d –m 1024

 Regular boot sequence
• qemu-system-x86_64 –drive file=822master.img,if=scsi,bus=0,unit=0

–m 1024

Accessing the Lab

 BladeCenter on private network behind gateway machine
 Students SSH into gateway machine

 Accounts provided for each team

 go_blue
 Static load-balancing across blades

 start_lab_vm
 Adds a lock file mechanism to keep students from starting two

VMs with one hard drive

 Invokes the standard VM boot command

 X11 Forwarding
 SSH Tunneling “easier" to set up but uses more CPU resources on

gateway than Forwarding

Virtual Disks

 Independent virtual disks
 Each lab machine would use ~6GB disk space
 ~78GB of storage space for13VMs

 Clone images
 Use one master image; use clone images for each lab machine
 Each clone image reads files from master image
 A file write copies the file to the clone
 Access from clone after that point

 Performance considerations
 1 master for 13 clones saves ~72GB
 Two reads to access blocks when present only in master.

(check for block in clone, then read from master)

Timing

 Linux kernel in CentOS 5.3 uses the jiffies counter
and a PIT to attempt to keep time

 Under heavy load, guest VM clock can skew
 Full Linux kernel build results in +/- 60 seconds skew from

host time

 Students cannot accurately measure performance

 make system becomes confused

Paravirtualized Clock

 Paravirtualized clock introduced into mainline Linux
kernel 2.6.26

 When compiled into the kernel
(CONFIG_PARAVIRT_CLOCK=Y), the guest kernel will
receive system time updates from the hypervisor

 Accuracy (~1 millisecond) is more than adequate for
class needs

Performance

 Virtualization is not free

 KVM uses Intel VT or AMD-V, but performance penalty
may be incurred through use of QEMU

 Host system may migrate VMs among different cores on
the system

 Linux utility taskset allows for setting which virtual CPUs
will execute a process
 taskset 0x3 cfdlight8 ii9.ex.perked > out.lit

 A virtual machine is another process
 taskset 0x3 qemu-system-x86_64

–drive file=822master.img,if=scsi,bus=0,unit=0 –m 1024

Performance Results

 Without pinning, penalty of 2.71%

 With pinning, penalty of 0.05%

Time in
seconds

Real Virtual

Unpinned 1634.56 1678.88

Pinned 1651.86 1652.68

Status

 Virtual lab for CPSC 822:

 KVM-based, hosted on 6 dual-Xeon blades

 Peaked at 18 VMs (26 graduate students)

 Simple, customs scripts for management and
allocation

 Still maintain relatively good performance of lab
machines

Real Challenges

 Device Driver Development

 Write real device drivers on virtual devices

 Virtual Lab for CPSC 822

 Real OS and performance work on virtual hardware

 Disk Scheduling

 Model real hardware in a virtual machine

Disk Scheduling

 Design a new scheduler with increased performance
under targeted class of workloads

 Development can be carried out easily on virtual
machines.

 Measuring performance of virtual disks does not
translate to performance of physical disks.

 Problem is in abstraction.

Virtual-to-Physical Abstraction

 No mapping between virtual and physical blocks.

 VM translates a block request to a location in the virtual disk image
(a file) and requests the block from that file.

 Request travels across the network to NAS device

 Request travels the request path on NAS device to the particular
disk(s) where the blocks of file reside.

 Access speeds to virtual disk will never match a real device

 Solution? Paravirtualized Disk

 Removes some but not all abstraction

 Does not resolve multiple VMs on one disk

 Does not address problems of SAN and NAS

NAS Consistency Problem

NAS Consistency Problem

Virtual Performance Throttles

 We introduce VPTs to overcome these limitations.

 Given a linear seek time performance model of a physical disk,
we can find the time to complete a request, T.

 We scale the performance model by a constant factor to
overcome abstraction, k

 We know the time it takes for a request to complete on the
virtual disk, V.

 We delay the request by k*T – V time.

 Dynamically scale k to adjust for virtual disk performance.

Proposed Implementation

 Attach Jprobe to down path of the disk request
 Calculate the distance traveled from last sector to this one

 Calculate target completion time, k*T.

 Attach Iprobe to up path of the disk request.
 If current time < k*T place request on a queue

 Else missed request, k needs to be increased.

 Timer
 Responsible for draining queue of requests once the requests

reach their target completion times

 If requests in queue for “too long”, then k needs to be lowered

Proof of Concept VPT

Status

 Proof of concept VPT exists

 CPSC 822 Disk Scheduling project is only a few weeks
away from being assigned

 TODO:

 Target a VPT to a linear performance model

 Add dynamic scaling

 Incorporate a target disk cache model into VPT

Conclusion

 Solutions to real challenges
 Framework for device driver development on virtual

hardware
• Binary compatible device drivers

• Almost no changes to Linux Kernel

 Virtual Lab for CPSC 822
• Resource constraints for class removed

• Timing and performance are acceptable for our need

 Framework for performance modeling on virtual hardware
• Extends Virtual Device Architecture

• Proof of concept exists

 Framework for “Linux as a Simulator”

Questions

