
A Framework for

Virtual Device Drive Development

&

Virtual Device-Based Performance Modeling

Robert Geist ● Zachary H. Jones ● Mike Westall

Acknowledgements

 This research has been supported by

 IBM Faculty Award

 IBM Ph.D. Fellowship

 NSF Grant Award 0722313

Thesis Statement

We will provide solutions to problems in
operating system virtualization that have been
motivated by major projects in CPSC 822.

Motivation

 CPSC 822, Operating System Design: A Case Study

 Projects:
 modify schedulers for performance

 new kernels

 write/build drivers for real devices

 Limitations:
 dedicated hardware required (usually crashed)

 limited enrollment

 waiting list, every semester

Virtualization

 Since mid-1960’s

 Generally has been a difficult (expensive) problem

 Intel VT-x/AMD-V: Virtualization for the masses

 Large part of the course can be virtualized

 VMWare, KVM, VirtualBox

Real Challenges

 Device Driver Development

 Write real device drivers on virtual devices

 Virtual Lab for CPSC 822

 Real OS and performance work on virtual hardware

 Disk Scheduling

 Model real hardware in a virtual machine

Device Driver Development

 Device driver for non-trivial graphics card

 Formerly 3Dlabs Permedia2V

 Virtualization provides only a simple VGA controller

 Hardware accelerated graphics solutions virtualized at API
level rather than architecture level

 Experimental support for importing devices to virtual
machines starting to emerge

 Still leaves one more problem…

One Problem

 Virtualization of one architecture is inadequate

 Graduate students have been known to communicate with
one another

 Kernel changes (each semester) rendering last semester’s
driver inoperable

 But too many students waste time patching last semester’s
solution

 Solution? Replace the graphics card.

 Companies believe that giving specifications away would
increase the risk of competitors stealing trade secrets

Design Goals for Virtual Architecture

 Support sophisticated components:

 Requires scheduling

 Requires memory mapping

 Generates Interrupts

 Provides DMA

 Require no special function calls.

 No modifications to existing Linux kernel

 Virtual architecture that can be easily reconfigured
each semester

Device Driver

 Scan PCI bus for GPU
 Finds base address and IRQ

 Call ioremap()
 Map base address to kernel virtual memory

 Initialize registers
 Call request_irq()
 Register DMA interrupt handler

 In response to ioctl() from the user app:
 Memory map registers to user virtual memory
 Handle DMA buffers, queuing, and initiating

 In response to interrupt
 Interrupt handler is called and processes next DMA buffer

queued (if buffer queue is not empty).

Virtual Device Architecture

User
Application

Linux Kernel*

Device
Driver

User Mode

Kernel Mode

Interrupt

VPCI Bus

VGPU

VDA

VCD

Kprobes

Kernel Probes

 Debug mechanism to monitor events in a system.
 Probe almost any instruction in the kernel

 Pre-handler runs, execute probed instruction, post-handler
runs

 Three flavors
 Kprobe

 Jprobe

 Kretprobe

 Kprobe utility lacks ability to dynamically replace
any kernel function.
 Introducing Iprobes – Hybrid of Kprobe and Jprobe

VPCI Bus: Iprobes

 Use Jprobe to check function parameters

 If caller flagged as accessing VPCI device, intercept

 Temporarily replace probed instruction with nop

 Kprobe post-handler modifies the IP to address of
replacement function.

 Most VPCIB probes are Iprobes, a few are Jprobes

 Caveat: Probes cannot be attached to inline
functions or functions declared with __kprobes

VPCI Bus: Interrupts

 When a DMA buffer is finished, an IRQ must be raised
so the DD interrupt handler is notified

 How do you throw a hardware IRQ from software?

 Intel x86 instruction int is for generating software
interrupts

 x86 interrupt mapping starts at 32

 x86_64 interrupt mapping starts at 48

Detecting Writes to VGPU Registers

 Added VPCI Page Fault to the page fault handler
(do_page_fault())

 When device driver requests the memory to be mapped
with write permissions
 VPCIB intercepts

 sets the memory to read-only; flush TLB

 activates the fault handler

 When the device driver/user code writes to the memory
 Page fault exception

 do_page_fault() hands control to the VPCI fault handler.

 VPCI fault handler restores write permission, flush TLB, wakes
up the VCD, and returns execution to spot of the fault

VGPU

 Allocates a kernel page

 Registers the device with VPCI Bus
 Gives memory address, IRQ number, device IDs for use with

Iprobes

 In response to fault handler
 Wake up daemon

 In response to VCD
 When done processing registers, write protect the register

page, flush TLB, sleep

 Generate interrupt if DMA is running, sleep until device
driver interrupt handler finishes

VCD

Map register page from VGPU

Initialize registers

Use ioctl() to sleep

Forever {

if (register values changed) take action
e.g. start graphics mode, draw to the screen, initiate DMA

Use ioctl() to write protect the page and sleep

}

Status

 Successfully deployed in CPSC 822 for 3 semesters
 Spring 2009 – physical lab machines

 Fall 2009, Spring 2010 – virtual lab machines

 Kernel Modifications:
 Most are avoided by kernel probes

 Remove __kprobes from do_page_fault()

 Devices:
 Can write binary compatible device drivers for use with real

hardware

 Allow for parallel development of DD and HW

 TODO: Create device generation tools.

Performance

 Rendering

 Students

 All teams have been able to complete FIFO drivers

 Teams still have difficulty with SMP-safe drivers

Transparency to Students

0

1

2

3

4

5

6

$1,000 $500 $200 $100 $0

S
tu

d
en

ts

How much would it cost to buy a Zach1?

Real Challenges

 Device Driver Development

 Write real device drivers on virtual devices

 Virtual Lab for CPSC 822

 Real OS and performance work on virtual hardware

 Disk Scheduling

 Model real hardware in a virtual machine

The Virtual Lab

KVM/QEMU Virtualization

Access from campus
by gateway machine
via SSH. VMs stored on NAS,

accessed by NFS.

VMs run on 6 dual-Xeon blades.
Part of 42-blade eServer
BladeCenter.

Custom scripts used for managing and accessing lab.

Virtual Machines

 Create a virtual disk
• qemu-img create –f qcow2 822master.img

 Install OS into virtual machine
• qemu-system-x86_64 –drive file=822master.img,if=scsi,bus=0,unit=0

–cdrom CentOS_64-5.3.iso –boot d –m 1024

 Regular boot sequence
• qemu-system-x86_64 –drive file=822master.img,if=scsi,bus=0,unit=0

–m 1024

Accessing the Lab

 BladeCenter on private network behind gateway machine
 Students SSH into gateway machine

 Accounts provided for each team

 go_blue
 Static load-balancing across blades

 start_lab_vm
 Adds a lock file mechanism to keep students from starting two

VMs with one hard drive

 Invokes the standard VM boot command

 X11 Forwarding
 SSH Tunneling “easier" to set up but uses more CPU resources on

gateway than Forwarding

Virtual Disks

 Independent virtual disks
 Each lab machine would use ~6GB disk space
 ~78GB of storage space for13VMs

 Clone images
 Use one master image; use clone images for each lab machine
 Each clone image reads files from master image
 A file write copies the file to the clone
 Access from clone after that point

 Performance considerations
 1 master for 13 clones saves ~72GB
 Two reads to access blocks when present only in master.

(check for block in clone, then read from master)

Timing

 Linux kernel in CentOS 5.3 uses the jiffies counter
and a PIT to attempt to keep time

 Under heavy load, guest VM clock can skew
 Full Linux kernel build results in +/- 60 seconds skew from

host time

 Students cannot accurately measure performance

 make system becomes confused

Paravirtualized Clock

 Paravirtualized clock introduced into mainline Linux
kernel 2.6.26

 When compiled into the kernel
(CONFIG_PARAVIRT_CLOCK=Y), the guest kernel will
receive system time updates from the hypervisor

 Accuracy (~1 millisecond) is more than adequate for
class needs

Performance

 Virtualization is not free

 KVM uses Intel VT or AMD-V, but performance penalty
may be incurred through use of QEMU

 Host system may migrate VMs among different cores on
the system

 Linux utility taskset allows for setting which virtual CPUs
will execute a process
 taskset 0x3 cfdlight8 ii9.ex.perked > out.lit

 A virtual machine is another process
 taskset 0x3 qemu-system-x86_64

–drive file=822master.img,if=scsi,bus=0,unit=0 –m 1024

Performance Results

 Without pinning, penalty of 2.71%

 With pinning, penalty of 0.05%

Time in
seconds

Real Virtual

Unpinned 1634.56 1678.88

Pinned 1651.86 1652.68

Status

 Virtual lab for CPSC 822:

 KVM-based, hosted on 6 dual-Xeon blades

 Peaked at 18 VMs (26 graduate students)

 Simple, customs scripts for management and
allocation

 Still maintain relatively good performance of lab
machines

Real Challenges

 Device Driver Development

 Write real device drivers on virtual devices

 Virtual Lab for CPSC 822

 Real OS and performance work on virtual hardware

 Disk Scheduling

 Model real hardware in a virtual machine

Disk Scheduling

 Design a new scheduler with increased performance
under targeted class of workloads

 Development can be carried out easily on virtual
machines.

 Measuring performance of virtual disks does not
translate to performance of physical disks.

 Problem is in abstraction.

Virtual-to-Physical Abstraction

 No mapping between virtual and physical blocks.

 VM translates a block request to a location in the virtual disk image
(a file) and requests the block from that file.

 Request travels across the network to NAS device

 Request travels the request path on NAS device to the particular
disk(s) where the blocks of file reside.

 Access speeds to virtual disk will never match a real device

 Solution? Paravirtualized Disk

 Removes some but not all abstraction

 Does not resolve multiple VMs on one disk

 Does not address problems of SAN and NAS

NAS Consistency Problem

NAS Consistency Problem

Virtual Performance Throttles

 We introduce VPTs to overcome these limitations.

 Given a linear seek time performance model of a physical disk,
we can find the time to complete a request, T.

 We scale the performance model by a constant factor to
overcome abstraction, k

 We know the time it takes for a request to complete on the
virtual disk, V.

 We delay the request by k*T – V time.

 Dynamically scale k to adjust for virtual disk performance.

Proposed Implementation

 Attach Jprobe to down path of the disk request
 Calculate the distance traveled from last sector to this one

 Calculate target completion time, k*T.

 Attach Iprobe to up path of the disk request.
 If current time < k*T place request on a queue

 Else missed request, k needs to be increased.

 Timer
 Responsible for draining queue of requests once the requests

reach their target completion times

 If requests in queue for “too long”, then k needs to be lowered

Proof of Concept VPT

Status

 Proof of concept VPT exists

 CPSC 822 Disk Scheduling project is only a few weeks
away from being assigned

 TODO:

 Target a VPT to a linear performance model

 Add dynamic scaling

 Incorporate a target disk cache model into VPT

Conclusion

 Solutions to real challenges
 Framework for device driver development on virtual

hardware
• Binary compatible device drivers

• Almost no changes to Linux Kernel

 Virtual Lab for CPSC 822
• Resource constraints for class removed

• Timing and performance are acceptable for our need

 Framework for performance modeling on virtual hardware
• Extends Virtual Device Architecture

• Proof of concept exists

 Framework for “Linux as a Simulator”

Questions

